

Year 12 Mathematics Extension 2

HSC ASSESSMENT TASK 1

Term	4 17	Jools	6	201	1
1 erm	4 V	veek	O	401	ц

Name:		
Teacher:		

Friday 19th November

Set by: VUL

- Attempt all questions.
- All questions are of equal value.
- Marks may be deducted for insufficient, or illegible work.
- Only Board approved calculators (excluding graphic calculators) may be used
- Total possible mark is **40**
- Begin each question on a new page.
- **TIME ALLOWED**: 60 minutes

Question 1			Marks
(a)	Let z	t=3-4i.	
	(i)	Find z^3 in the form $x+iy$	1
	(ii)	Find $z - 2\overline{z}$ in the form $x + iy$	1
	(iii)	Find $\frac{-i}{z}$ in the form $x + iy$	2
(b)		$z^2 = 5 + 12i$ for z giving your answers in the form $x + iy$ where y are real.	3
(c)	(i)	Express $-1+i$ in modulus-argument form.	1
	(ii)	Hence evaluate $(-1+i)^{12}$	2

(d) On separate Argand diagrams, sketch the locus of points z such that:

(i)
$$\arg(z-i) = -\frac{\pi}{4}$$

(ii) the inequalities
$$|z-3+i| \le 5$$
 and $|z+1| \le |z-1|$ both hold 3

(iii)
$$|z| = \operatorname{Im}(z)$$

(e) Prove that
$$12^n > 5^n + 7^n$$
 positive integers $n \ge 2$

Question 2 Start a new page.

- (a) The points O, A, Z and C on the Argand diagram represent the complex numbers 0, 1, z and z+1 respectively, where $z = \cos \theta + i \sin \theta$ is any complex number of modulus 1, with $0 < \theta < \pi$.
 - (i) Explain why *OACZ* is a rhombus 1
 - (ii) Show that $\frac{z-1}{z+1}$ is purely imaginary 2
 - (iii) Find the modulus and argument of z+1
- (b) (i) By considering $z^9 1$ as the difference of two cubes write $1 + z + z^2 + z^3 + z^4 + z^5 + z^6 + z^7 + z^8$ as a product of two polynomial factors with real coefficients, one of which is quadratic. **2**
 - (ii) Solve $z^9 1 = 0$ and determine the six solutions of $z^6 + z^3 + 1 = 0$
 - (iii) Hence show that $\cos \frac{2\pi}{9} + \cos \frac{4\pi}{9} = \cos \frac{\pi}{9}$
- (c) Sketch the locus of the complex number z = x + iy where $\arg\left[\frac{z-3}{z-1}\right] = \frac{\pi}{2}$.

 Describe this locus geometrically.
- (d) If $z = \cos \theta + i \sin \theta$:
 - (i) Show that $z^n + \frac{1}{z^n} = 2\cos n\theta$
 - (ii) Let $\omega = z + \frac{1}{z}$. Prove that $\omega^3 + \omega^2 2\omega 2 = z + \frac{1}{z} + z^2 + \frac{1}{z^2} + z^3 + \frac{1}{z^3}$
 - (iii) Hence solve $\cos \theta + \cos 2\theta + \cos 3\theta = 0$ for $0 \le \theta \le 2\pi$

End of Assessment Task

2010 YEAR 12 X2 TASK 1 SOLUTIONS

a)
$$z = 3 - 4$$
.

$$i) \quad \frac{2^{3}}{2^{3}} = \frac{3^{3}}{3^{3}} + \frac{3(3)^{2}(-43)}{4} + \frac{3(3)(-43)^{2}}{4} + \frac$$

$$(ii)$$
 $z-2\bar{z}=(3-4i)-2(3+4i)$
= -3-12i

$$= -3 - 12i$$

$$\frac{iii}{2} = \frac{i}{3-4i} \times \frac{3+4i}{3+4i}$$

So
$$x^2 - y^2 + 2xyi = 5 + 12i$$

Equality real and imaginary parts.

 $x^2 - y^2 = 5$
 $x = \pm 3$
 $y = \pm 2$

$$x = \pm 3 \quad y = \pm 2$$

ii)
$$(-1+i)^{12} = (\sqrt{2} \cos 3\pi)^{12} = 2 \cos 9\pi = 64 \cos \pi$$

= -64

e) To Prove 12" > 5" + 7" m > 2 $i_{\zeta} 12^{m} - (5^{n} + 7^{n}) > 0$ So when $n = 2^{n} - (5^{n} + 7^{n}) = 12^{2} - (5^{2} + 7^{2})$ = 70 > 0-'. $12^{m} > 5^{n} + 7^{m}$ when n = 2Assume the statement is true for n=k some fixed positive integer. ig 12 > 5 + 7 $12^{n} - (5^{n} + 7^{n}) = 12^{k+1} - (5^{k+1} + 7^{k+1})$ $= 12.12^{k} - 5.5^{k} - 7.7^{k}$ > 12 (5k+7k) - 5.5k -7:7k = 12.5k-5.5k+12.7k-7.7h $= 7 \times 5^{k} + 5 \cdot 7^{k} > 0$ as 5th, 7th >0 for all be If the statement is true for n=k Threfore the statement is true for m=k+1 Since the statement is the for ni=1 Then he statement is true for n= 2,8, x, ---127 > 5"+7" Am n 22.

 $\frac{b}{2^{4}-1} = (2^{3}-1)(2^{6}+2^{3}+1)$ $= (2-1)(2^{2}+2+1)(2^{6}+2^{3}+1)$ and = -1 = (2+1) (28+27+26+25+24+ 23+ 22+2+1) Equating and dividing by 2-140 1+2+22+ ... +28 = (22+2+1)(26+23+1) ii) For $2^9 - 1 = 0$ $= k = 6is \frac{2k\pi}{1} \quad k = 0, 1, 2, \dots 8$ $\frac{2^{2}+2+1=0}{2} = \frac{-1+\sqrt{5}}{2}$ Solutions of =3-1=0 are 1, cis 2 , cis -21 so remaining solutions are solutions of 26+23+1=0 ere cis±25 cis±45 cis±85 iii) Sum of roats = 0 cis 2 + cis # + cis 8 + cis - + cis - + cis - + cis - = 0 2 (cos 200 + cos 400 + cos 200) = 0 (equatre)
real points 30 605 2 + cos 4 = - cos 8 T $50 \text{ us } \frac{2\pi}{9} + \cos \frac{4\pi}{9} = \cos \frac{\pi}{9}$ as cos (TT-4) = - Cos O

iii)
$$\omega S\theta + \omega S20 + \omega S20 = 0$$
 $0 \neq \theta \neq 2\pi$

if $\omega Sn\theta = \frac{1}{2} \left(\frac{2}{2} + \frac{1}{2^n} \right)$

then $\frac{1}{2} \left(\frac{2}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{2}{2} + \frac{1}{2^n} \right) = 0$

iv $\frac{1}{2} \left(\omega^2 + \omega^2 - 2\omega - 2 \right) = 0$ from part ii)

50 $\omega^2 \left(\omega + 1 \right) - 2 \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1 \right) = 0$
 $\left(\omega^2 - 2 \right) \left(\omega + 1$